Corpus GrippeCanadaV3

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Effect of Individual Movements and Interventions on the Spread of Influenza in Long-Term Care Facilities.

Identifieur interne : 000078 ( Main/Exploration ); précédent : 000077; suivant : 000079

The Effect of Individual Movements and Interventions on the Spread of Influenza in Long-Term Care Facilities.

Auteurs : Mehdi Najafi ; Marek Laskowski ; Pieter T. De Boer [Pays-Bas] ; Evelyn Williams [Canada] ; Ayman Chit [Canada] ; Seyed M. Moghadas

Source :

RBID : pubmed:28538110

Descripteurs français

English descriptors

Abstract

BACKGROUND

Nosocomial influenza poses a serious risk among residents of long-term care facilities (LTCFs).

OBJECTIVE

We sought to evaluate the effect of resident and staff movements and contact patterns on the outcomes of various intervention strategies for influenza control in an LTCF.

METHODS

We collected contact frequency data in Canada's largest veterans' LTCF by enroling residents and staff into a study that tracked their movements through wireless tags and signal receivers. We analyzed and fitted the data to an agent-based simulation model of influenza infection, and performed Monte-Carlo simulations to evaluate the benefit of antiviral prophylaxis and patient isolation added to standard (baseline) infection control practice (i.e., vaccination of residents and staff, plus antiviral treatment of residents with symptomatic infection).

RESULTS

We calibrated the model to attack rates of 20%, 40%, and 60% for the baseline scenario. For data-driven movements, we found that the largest reduction in attack rates (12.5% to 27%; ANOVA P < 0.001) was achieved when the baseline strategy was combined with antiviral prophylaxis for all residents for the duration of the outbreak. Isolation of residents with symptomatic infection resulted in little or no effect on the attack rates (2.3% to 4.2%; ANOVA P > 0.2) among residents. In contrast, parameterizing the model with random movements yielded different results, suggesting that the highest benefit was achieved through patient isolation (69.6% to 79.6%; ANOVA P < 0.001) while the additional benefit of prophylaxis was negligible in reducing the cumulative number of infections.

CONCLUSIONS

Our study revealed a highly structured contact and movement patterns within the LTCF. Accounting for this structure-instead of assuming randomness-in decision analytic methods can result in substantially different predictions.


DOI: 10.1177/0272989X17708564
PubMed: 28538110


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Effect of Individual Movements and Interventions on the Spread of Influenza in Long-Term Care Facilities.</title>
<author>
<name sortKey="Najafi, Mehdi" sort="Najafi, Mehdi" uniqKey="Najafi M" first="Mehdi" last="Najafi">Mehdi Najafi</name>
<affiliation>
<nlm:affiliation>Agent-Based Modelling Laboratory, York University, Toronto, ON, Canada (MN, ML, SMM).</nlm:affiliation>
<wicri:noCountry code="subField">SMM)</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Laskowski, Marek" sort="Laskowski, Marek" uniqKey="Laskowski M" first="Marek" last="Laskowski">Marek Laskowski</name>
<affiliation>
<nlm:affiliation>Agent-Based Modelling Laboratory, York University, Toronto, ON, Canada (MN, ML, SMM).</nlm:affiliation>
<wicri:noCountry code="subField">SMM)</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="De Boer, Pieter T" sort="De Boer, Pieter T" uniqKey="De Boer P" first="Pieter T" last="De Boer">Pieter T. De Boer</name>
<affiliation wicri:level="4">
<nlm:affiliation>Unit of PharmacoTherapy, Epidemiology & Economics (PTEE), Department of Pharmacy, University of Groningen, Groningen, The Netherlands (PTdB).</nlm:affiliation>
<orgName type="university">Université de Groningue</orgName>
<country>Pays-Bas</country>
<placeName>
<settlement type="city">Groningue (ville)</settlement>
<region>Groningue (province)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Williams, Evelyn" sort="Williams, Evelyn" uniqKey="Williams E" first="Evelyn" last="Williams">Evelyn Williams</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Long Term Care, Sunnybrook Health Science Centre, Toronto, ON, Canada (EW).</nlm:affiliation>
<country>Canada</country>
<wicri:regionArea>Division of Long Term Care, Sunnybrook Health Science Centre, Toronto, ON</wicri:regionArea>
<wicri:noRegion>ON</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chit, Ayman" sort="Chit, Ayman" uniqKey="Chit A" first="Ayman" last="Chit">Ayman Chit</name>
<affiliation wicri:level="4">
<nlm:affiliation>Sanofi Pasteur, Swiftwater, PA, USA (AC); and Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada (AC).</nlm:affiliation>
<country>Canada</country>
<wicri:regionArea>Sanofi Pasteur, Swiftwater, PA, USA (AC); and Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON</wicri:regionArea>
<orgName type="university">Université de Toronto</orgName>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Moghadas, Seyed M" sort="Moghadas, Seyed M" uniqKey="Moghadas S" first="Seyed M" last="Moghadas">Seyed M. Moghadas</name>
<affiliation>
<nlm:affiliation>Agent-Based Modelling Laboratory, York University, Toronto, ON, Canada (MN, ML, SMM).</nlm:affiliation>
<wicri:noCountry code="subField">SMM)</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28538110</idno>
<idno type="pmid">28538110</idno>
<idno type="doi">10.1177/0272989X17708564</idno>
<idno type="wicri:Area/Main/Corpus">000092</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000092</idno>
<idno type="wicri:Area/Main/Curation">000092</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000092</idno>
<idno type="wicri:Area/Main/Exploration">000092</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The Effect of Individual Movements and Interventions on the Spread of Influenza in Long-Term Care Facilities.</title>
<author>
<name sortKey="Najafi, Mehdi" sort="Najafi, Mehdi" uniqKey="Najafi M" first="Mehdi" last="Najafi">Mehdi Najafi</name>
<affiliation>
<nlm:affiliation>Agent-Based Modelling Laboratory, York University, Toronto, ON, Canada (MN, ML, SMM).</nlm:affiliation>
<wicri:noCountry code="subField">SMM)</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Laskowski, Marek" sort="Laskowski, Marek" uniqKey="Laskowski M" first="Marek" last="Laskowski">Marek Laskowski</name>
<affiliation>
<nlm:affiliation>Agent-Based Modelling Laboratory, York University, Toronto, ON, Canada (MN, ML, SMM).</nlm:affiliation>
<wicri:noCountry code="subField">SMM)</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="De Boer, Pieter T" sort="De Boer, Pieter T" uniqKey="De Boer P" first="Pieter T" last="De Boer">Pieter T. De Boer</name>
<affiliation wicri:level="4">
<nlm:affiliation>Unit of PharmacoTherapy, Epidemiology & Economics (PTEE), Department of Pharmacy, University of Groningen, Groningen, The Netherlands (PTdB).</nlm:affiliation>
<orgName type="university">Université de Groningue</orgName>
<country>Pays-Bas</country>
<placeName>
<settlement type="city">Groningue (ville)</settlement>
<region>Groningue (province)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Williams, Evelyn" sort="Williams, Evelyn" uniqKey="Williams E" first="Evelyn" last="Williams">Evelyn Williams</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Long Term Care, Sunnybrook Health Science Centre, Toronto, ON, Canada (EW).</nlm:affiliation>
<country>Canada</country>
<wicri:regionArea>Division of Long Term Care, Sunnybrook Health Science Centre, Toronto, ON</wicri:regionArea>
<wicri:noRegion>ON</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chit, Ayman" sort="Chit, Ayman" uniqKey="Chit A" first="Ayman" last="Chit">Ayman Chit</name>
<affiliation wicri:level="4">
<nlm:affiliation>Sanofi Pasteur, Swiftwater, PA, USA (AC); and Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada (AC).</nlm:affiliation>
<country>Canada</country>
<wicri:regionArea>Sanofi Pasteur, Swiftwater, PA, USA (AC); and Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON</wicri:regionArea>
<orgName type="university">Université de Toronto</orgName>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Moghadas, Seyed M" sort="Moghadas, Seyed M" uniqKey="Moghadas S" first="Seyed M" last="Moghadas">Seyed M. Moghadas</name>
<affiliation>
<nlm:affiliation>Agent-Based Modelling Laboratory, York University, Toronto, ON, Canada (MN, ML, SMM).</nlm:affiliation>
<wicri:noCountry code="subField">SMM)</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Medical decision making : an international journal of the Society for Medical Decision Making</title>
<idno type="eISSN">1552-681X</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aged</term>
<term>Antiviral Agents (therapeutic use)</term>
<term>Contact Tracing</term>
<term>Cross Infection (epidemiology)</term>
<term>Cross Infection (prevention & control)</term>
<term>Cross Infection (transmission)</term>
<term>Disease Outbreaks (prevention & control)</term>
<term>Humans</term>
<term>Influenza, Human (epidemiology)</term>
<term>Influenza, Human (prevention & control)</term>
<term>Influenza, Human (transmission)</term>
<term>Long-Term Care</term>
<term>Middle Aged</term>
<term>Models, Theoretical</term>
<term>Monte Carlo Method</term>
<term>Ontario (epidemiology)</term>
<term>Patient Isolation</term>
<term>Patient Transfer</term>
<term>Radio Waves</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adulte d'âge moyen</term>
<term>Antiviraux (usage thérapeutique)</term>
<term>Flambées de maladies ()</term>
<term>Grippe humaine ()</term>
<term>Grippe humaine (transmission)</term>
<term>Grippe humaine (épidémiologie)</term>
<term>Humains</term>
<term>Infection croisée ()</term>
<term>Infection croisée (transmission)</term>
<term>Infection croisée (épidémiologie)</term>
<term>Isolement du patient</term>
<term>Modèles théoriques</term>
<term>Méthode de Monte-Carlo</term>
<term>Ondes hertziennes</term>
<term>Ontario (épidémiologie)</term>
<term>Soins de longue durée</term>
<term>Sujet âgé</term>
<term>Transfert de patient</term>
<term>Traçage des contacts</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="therapeutic use" xml:lang="en">
<term>Antiviral Agents</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Cross Infection</term>
<term>Influenza, Human</term>
<term>Ontario</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Cross Infection</term>
<term>Disease Outbreaks</term>
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="transmission" xml:lang="en">
<term>Cross Infection</term>
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="usage thérapeutique" xml:lang="fr">
<term>Antiviraux</term>
<term>Grippe humaine</term>
<term>Infection croisée</term>
</keywords>
<keywords scheme="MESH" qualifier="épidémiologie" xml:lang="fr">
<term>Grippe humaine</term>
<term>Infection croisée</term>
<term>Ontario</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Aged</term>
<term>Contact Tracing</term>
<term>Humans</term>
<term>Long-Term Care</term>
<term>Middle Aged</term>
<term>Models, Theoretical</term>
<term>Monte Carlo Method</term>
<term>Patient Isolation</term>
<term>Patient Transfer</term>
<term>Radio Waves</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adulte d'âge moyen</term>
<term>Flambées de maladies</term>
<term>Grippe humaine</term>
<term>Humains</term>
<term>Infection croisée</term>
<term>Isolement du patient</term>
<term>Modèles théoriques</term>
<term>Méthode de Monte-Carlo</term>
<term>Ondes hertziennes</term>
<term>Soins de longue durée</term>
<term>Sujet âgé</term>
<term>Transfert de patient</term>
<term>Traçage des contacts</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Nosocomial influenza poses a serious risk among residents of long-term care facilities (LTCFs).</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>OBJECTIVE</b>
</p>
<p>We sought to evaluate the effect of resident and staff movements and contact patterns on the outcomes of various intervention strategies for influenza control in an LTCF.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>We collected contact frequency data in Canada's largest veterans' LTCF by enroling residents and staff into a study that tracked their movements through wireless tags and signal receivers. We analyzed and fitted the data to an agent-based simulation model of influenza infection, and performed Monte-Carlo simulations to evaluate the benefit of antiviral prophylaxis and patient isolation added to standard (baseline) infection control practice (i.e., vaccination of residents and staff, plus antiviral treatment of residents with symptomatic infection).</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We calibrated the model to attack rates of 20%, 40%, and 60% for the baseline scenario. For data-driven movements, we found that the largest reduction in attack rates (12.5% to 27%; ANOVA P < 0.001) was achieved when the baseline strategy was combined with antiviral prophylaxis for all residents for the duration of the outbreak. Isolation of residents with symptomatic infection resulted in little or no effect on the attack rates (2.3% to 4.2%; ANOVA P > 0.2) among residents. In contrast, parameterizing the model with random movements yielded different results, suggesting that the highest benefit was achieved through patient isolation (69.6% to 79.6%; ANOVA P < 0.001) while the additional benefit of prophylaxis was negligible in reducing the cumulative number of infections.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Our study revealed a highly structured contact and movement patterns within the LTCF. Accounting for this structure-instead of assuming randomness-in decision analytic methods can result in substantially different predictions.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28538110</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>05</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>09</Month>
<Day>26</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1552-681X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>37</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2017</Year>
<Month>11</Month>
</PubDate>
</JournalIssue>
<Title>Medical decision making : an international journal of the Society for Medical Decision Making</Title>
<ISOAbbreviation>Med Decis Making</ISOAbbreviation>
</Journal>
<ArticleTitle>The Effect of Individual Movements and Interventions on the Spread of Influenza in Long-Term Care Facilities.</ArticleTitle>
<Pagination>
<MedlinePgn>871-881</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1177/0272989X17708564</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND">Nosocomial influenza poses a serious risk among residents of long-term care facilities (LTCFs).</AbstractText>
<AbstractText Label="OBJECTIVE">We sought to evaluate the effect of resident and staff movements and contact patterns on the outcomes of various intervention strategies for influenza control in an LTCF.</AbstractText>
<AbstractText Label="METHODS">We collected contact frequency data in Canada's largest veterans' LTCF by enroling residents and staff into a study that tracked their movements through wireless tags and signal receivers. We analyzed and fitted the data to an agent-based simulation model of influenza infection, and performed Monte-Carlo simulations to evaluate the benefit of antiviral prophylaxis and patient isolation added to standard (baseline) infection control practice (i.e., vaccination of residents and staff, plus antiviral treatment of residents with symptomatic infection).</AbstractText>
<AbstractText Label="RESULTS">We calibrated the model to attack rates of 20%, 40%, and 60% for the baseline scenario. For data-driven movements, we found that the largest reduction in attack rates (12.5% to 27%; ANOVA P < 0.001) was achieved when the baseline strategy was combined with antiviral prophylaxis for all residents for the duration of the outbreak. Isolation of residents with symptomatic infection resulted in little or no effect on the attack rates (2.3% to 4.2%; ANOVA P > 0.2) among residents. In contrast, parameterizing the model with random movements yielded different results, suggesting that the highest benefit was achieved through patient isolation (69.6% to 79.6%; ANOVA P < 0.001) while the additional benefit of prophylaxis was negligible in reducing the cumulative number of infections.</AbstractText>
<AbstractText Label="CONCLUSIONS">Our study revealed a highly structured contact and movement patterns within the LTCF. Accounting for this structure-instead of assuming randomness-in decision analytic methods can result in substantially different predictions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Najafi</LastName>
<ForeName>Mehdi</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Agent-Based Modelling Laboratory, York University, Toronto, ON, Canada (MN, ML, SMM).</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Laskowski</LastName>
<ForeName>Marek</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Agent-Based Modelling Laboratory, York University, Toronto, ON, Canada (MN, ML, SMM).</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>de Boer</LastName>
<ForeName>Pieter T</ForeName>
<Initials>PT</Initials>
<AffiliationInfo>
<Affiliation>Unit of PharmacoTherapy, Epidemiology & Economics (PTEE), Department of Pharmacy, University of Groningen, Groningen, The Netherlands (PTdB).</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Williams</LastName>
<ForeName>Evelyn</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Division of Long Term Care, Sunnybrook Health Science Centre, Toronto, ON, Canada (EW).</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chit</LastName>
<ForeName>Ayman</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Sanofi Pasteur, Swiftwater, PA, USA (AC); and Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada (AC).</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Moghadas</LastName>
<ForeName>Seyed M</ForeName>
<Initials>SM</Initials>
<AffiliationInfo>
<Affiliation>Agent-Based Modelling Laboratory, York University, Toronto, ON, Canada (MN, ML, SMM).</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>05</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Med Decis Making</MedlineTA>
<NlmUniqueID>8109073</NlmUniqueID>
<ISSNLinking>0272-989X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016358" MajorTopicYN="N">Contact Tracing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003428" MajorTopicYN="N">Cross Infection</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="Y">prevention & control</QualifierName>
<QualifierName UI="Q000635" MajorTopicYN="N">transmission</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004196" MajorTopicYN="N">Disease Outbreaks</DescriptorName>
<QualifierName UI="Q000517" MajorTopicYN="Y">prevention & control</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007251" MajorTopicYN="N">Influenza, Human</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="Y">prevention & control</QualifierName>
<QualifierName UI="Q000635" MajorTopicYN="N">transmission</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008134" MajorTopicYN="N">Long-Term Care</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008962" MajorTopicYN="N">Models, Theoretical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009010" MajorTopicYN="N">Monte Carlo Method</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009864" MajorTopicYN="N">Ontario</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010356" MajorTopicYN="N">Patient Isolation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010360" MajorTopicYN="Y">Patient Transfer</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011846" MajorTopicYN="N">Radio Waves</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">agent-based modelling</Keyword>
<Keyword MajorTopicYN="Y">contact patterns</Keyword>
<Keyword MajorTopicYN="Y">interventions</Keyword>
<Keyword MajorTopicYN="Y">nosocomial influenza</Keyword>
<Keyword MajorTopicYN="Y">simulations</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>5</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>5</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>5</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28538110</ArticleId>
<ArticleId IdType="doi">10.1177/0272989X17708564</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
<li>Pays-Bas</li>
</country>
<region>
<li>Groningue (province)</li>
<li>Ontario</li>
</region>
<settlement>
<li>Groningue (ville)</li>
<li>Toronto</li>
</settlement>
<orgName>
<li>Université de Groningue</li>
<li>Université de Toronto</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Laskowski, Marek" sort="Laskowski, Marek" uniqKey="Laskowski M" first="Marek" last="Laskowski">Marek Laskowski</name>
<name sortKey="Moghadas, Seyed M" sort="Moghadas, Seyed M" uniqKey="Moghadas S" first="Seyed M" last="Moghadas">Seyed M. Moghadas</name>
<name sortKey="Najafi, Mehdi" sort="Najafi, Mehdi" uniqKey="Najafi M" first="Mehdi" last="Najafi">Mehdi Najafi</name>
</noCountry>
<country name="Pays-Bas">
<region name="Groningue (province)">
<name sortKey="De Boer, Pieter T" sort="De Boer, Pieter T" uniqKey="De Boer P" first="Pieter T" last="De Boer">Pieter T. De Boer</name>
</region>
</country>
<country name="Canada">
<noRegion>
<name sortKey="Williams, Evelyn" sort="Williams, Evelyn" uniqKey="Williams E" first="Evelyn" last="Williams">Evelyn Williams</name>
</noRegion>
<name sortKey="Chit, Ayman" sort="Chit, Ayman" uniqKey="Chit A" first="Ayman" last="Chit">Ayman Chit</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/GrippeCanadaV3/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000078 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000078 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    GrippeCanadaV3
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28538110
   |texte=   The Effect of Individual Movements and Interventions on the Spread of Influenza in Long-Term Care Facilities.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28538110" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GrippeCanadaV3 

Wicri

This area was generated with Dilib version V0.6.35.
Data generation: Tue Jul 7 13:36:58 2020. Site generation: Sat Sep 26 07:06:42 2020